update_tomic.Rd
Provide an updated features, samples or measurements table to a
tomic
.
update_tomic(tomic, tomic_table)
Either a tidy_omic
or triple_omic
object
A table taken from a tidy (i.e., augmented measurements) or triple omic dataset
A tomic
object with updated features, samples or measurements.
library(dplyr)
updated_features <- brauer_2008_triple$features %>%
dplyr::filter(BP == "biological process unknown") %>%
dplyr::mutate(chromosome = purrr::map_int(systematic_name, function(x) {
which(LETTERS == stringr::str_match(x, "Y([A-Z])")[2])
}))
update_tomic(brauer_2008_triple, updated_features)
#> $features
#> # A tibble: 110 × 5
#> name BP MF systematic_name chromosome
#> <chr> <chr> <chr> <chr> <int>
#> 1 YOL029C biological process unknown molecular func… YOL029C 15
#> 2 YHR036W biological process unknown molecular func… YHR036W 8
#> 3 YAL046C biological process unknown molecular func… YAL046C 1
#> 4 YHR151C biological process unknown molecular func… YHR151C 8
#> 5 YKL027W biological process unknown molecular func… YKL027W 11
#> 6 YBR220C biological process unknown molecular func… YBR220C 2
#> 7 YLR057W biological process unknown molecular func… YLR057W 12
#> 8 YDR239C biological process unknown molecular func… YDR239C 4
#> 9 KKQ8 biological process unknown protein kinase… YKL168C 11
#> 10 UIP5 biological process unknown molecular func… YKR044W 11
#> # ℹ 100 more rows
#>
#> $samples
#> # A tibble: 36 × 3
#> sample nutrient DR
#> <chr> <chr> <dbl>
#> 1 G0.05 G 0.05
#> 2 G0.1 G 0.1
#> 3 G0.15 G 0.15
#> 4 G0.2 G 0.2
#> 5 G0.25 G 0.25
#> 6 G0.3 G 0.3
#> 7 N0.05 N 0.05
#> 8 N0.1 N 0.1
#> 9 N0.15 N 0.15
#> 10 N0.2 N 0.2
#> # ℹ 26 more rows
#>
#> $measurements
#> # A tibble: 3,960 × 3
#> name sample expression
#> <chr> <chr> <dbl>
#> 1 YOL029C G0.05 -0.22
#> 2 YHR036W G0.05 -0.91
#> 3 YAL046C G0.05 0.05
#> 4 YHR151C G0.05 -0.53
#> 5 YKL027W G0.05 -0.52
#> 6 YBR220C G0.05 -1.06
#> 7 YLR057W G0.05 -0.42
#> 8 YDR239C G0.05 -0.55
#> 9 KKQ8 G0.05 -0.6
#> 10 UIP5 G0.05 -0.56
#> # ℹ 3,950 more rows
#>
#> $design
#> $design$features
#> # A tibble: 5 × 2
#> variable type
#> <chr> <chr>
#> 1 name feature_primary_key
#> 2 BP character
#> 3 MF character
#> 4 systematic_name character
#> 5 chromosome integer
#>
#> $design$samples
#> # A tibble: 3 × 2
#> variable type
#> <chr> <chr>
#> 1 sample sample_primary_key
#> 2 nutrient character
#> 3 DR numeric
#>
#> $design$measurements
#> # A tibble: 3 × 2
#> variable type
#> <chr> <chr>
#> 1 name feature_primary_key
#> 2 sample sample_primary_key
#> 3 expression numeric
#>
#> $design$feature_pk
#> [1] "name"
#>
#> $design$sample_pk
#> [1] "sample"
#>
#>
#> attr(,"class")
#> [1] "triple_omic" "tomic" "general"